

Sunset Ranch
Water System 10-325

# 2004 Annual Water Quality Report



WATER QUALITY MANAGEMENT DIVISION

#### THIS WATER QUALITY ANNUAL REPORT PROVIDES INFORMATION ON YOUR SPECIFIC DRINKING WATER SYSTEM.



City of Tucson
Tucson Water
P.O.Box 27210
Tucson, AZ 85726-7210

#### Whom do I contact for more information?

For more information on this Tucson Water report contact Tom Jefferson or Mohsen Belyani with the Water Quality Management Division at 791-5252. Or, e-mail your questions to tom.jefferson@tucsonaz.gov or mohsen.belyani@tucsonaz.gov.

#### Telephone Numbers:

Tucson Water Public Information Office 791-4331
Tucson Water Quality Management Division 791-5252
Tucson Water Customer Liaison 791-5945
Tucson Water Customer Service/Billing 791-3242
Tucson Water 24 hour Emergency 791-4133

Additional information is also available from the Tucson Water Website: www.tucsonaz.gov/water/

United States Environmental Protection Agency Safe

Drinking Water Hotline: I-800-426-4791

USEPA Website: www.epa.gov/safewater/

#### Were there any contaminants detected in my drinking water?

Tucson Water regularly samples the drinking water that is delivered to you. Much of this testing is required by drinking water regulations. In addition to this required monitoring, we perform a great deal of discretionary monitoring in order to provide both Tucson Water staff and customers with additional information.

The Detected Contaminants Table below lists all contaminants that were detected in either the required or the discretionary drinking water monitoring. Two inorganic contaminants of special interest are arsenic and fluoride, which are naturally occurring. For more information, please see the

table and the specific explanations, which follow the table.

In most cases, the minimum detectable level of a contaminant is well below the USEPA regulatory limit for that contaminant. To compare the detected amount with the amount allowed by the USEPA, refer to the Maximum Contaminant Level (MCL) column in the table. The vast majority of regulated contaminants were not detected in drinking water delivered by Tucson Water. The non-detected results were not included in the table. For a complete list of all USEPA regulated contaminants contact the USEPA at 1-800-426-4791 or visit the USEPA website at www.epa.gov/safewater/mcl.html#mcls.

#### **Detected Contaminants Table**

| CONTAMINANT              | ANALYSIS DATE | MAXIMUM RESULT        | RANGE             | MCL          | MCLG    | MAJO                                                | OR SOURCES                              |
|--------------------------|---------------|-----------------------|-------------------|--------------|---------|-----------------------------------------------------|-----------------------------------------|
| Inorganics               |               |                       |                   |              |         |                                                     |                                         |
| Fluoride                 | 2003          | 0.75 ppm              | 0.32 – 0.75 ppm   | 4 ppm        | 4 ppm   | Natural deposits; septic tanks; agriculture; sewage |                                         |
| Nitrate (as N)           | 2004          | 3.1 ppm               | 2.8 - 3.1 ppm     | 10 ppm       | 10 ppm  | Natural deposits; septic tanks; agriculture; sewage |                                         |
| Radiochemical            |               |                       |                   |              |         | Ü                                                   |                                         |
| Gross Alpha              | 2001          | 12.3 pCi/L            | 12.3 – 12.3 pCi/L | •            | 0 pCi/L | Natural deposits                                    |                                         |
| Radium 226               | 2001          | 0.8 pCi/              | 0.8 – 0.8 pCi/L   | 20 pCi/L     | None    | Natural deposits                                    |                                         |
| Haloacetic Acids         |               |                       |                   |              |         |                                                     |                                         |
| Dibromoacetic Acid       | 2004          | 1.8 ppb               | 1.8 - 1.8 ppb     | 60 ppb       | None    | By-product of chlorination                          |                                         |
| Dichloroacetic Acid      | 2004          | 1 ppb                 | 1 - 1 ppb         | 60 ppb       | None    |                                                     | roduct of chlorination                  |
| Total Haloacetic Acids ( | (5) 2004      | 2.8 ppb 2.8 - 2.8 ppb |                   | 60 ppb       | None    | By-product of chlorination                          |                                         |
| Trihalomethane or Co     | onstituent    |                       |                   |              |         |                                                     |                                         |
| Bromoform                | 2004          | 8.6 ppb               | 8.6 - 8.6 ppb     | 80 ppb       | None    | By-product of chlorination                          |                                         |
| Chlorodibromomethane     | e 2004        | 2.5 ppb               | 2.5 - 2.5 ppb     | 80 ppb       | None    | By-product of chlorination                          |                                         |
| Total Trihalomethanes    | 2004          | 11.1 ppb              | 11.1 - 11.1 ppb   | 80 ppb       | None    | By-product of chlorination                          |                                         |
| CONTAMINANT A            | NALYSIS DATE  | NO. OF SAMPLE         |                   | H PERCENTILE |         | MCLG                                                | MAJOR SOURCES                           |
|                          |               | THE ACTION L          | EVEL              | VALUE        | LEVEL   |                                                     |                                         |
| Lead and Copper in S     | •             | amples                |                   |              |         |                                                     |                                         |
| Lead                     | 2004          | none                  |                   | 2.5 ppb      | 15 ppb  | 0                                                   | Corrosion of household plumbing systems |
| Copper                   | 2004          | none                  |                   | 0.26 ppm     | 1.3 ppm | 1.3 ppm                                             | Corrosion of household plumbing systems |

#### **Drinking Water Terms and Definitions**

<u>Action level.</u> The concentration of a contaminant that if exceeded, triggers a treatment or other requirement which a water system must follow.

Maximum Contaminant Level (MCL). The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. If a contaminant is believed to cause health concerns in humans, then the MCL is set as close as practical to zero and at an acceptable level of risk. Generally, the maximum acceptable risk of cancer is 1 in 10,000 with 70 years of exposure.

<u>Maximum Contaminant Level Goal (MCLG)</u>. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

<u>Parts Per Billion (ppb)</u>. Some constituents in water are measured in very small units. Organic compounds such as trihalomethanes are monitored by Tucson Water in terms of parts per billion (or micrograms per liter). To help you visualize how very small this unit is, we offer the following illustrations. One part per billion equals: One second of time in 31.7 years or the first 16 inches of a trip to the moon.

<u>Parts Per Million (ppm).</u> Many dissolved minerals such as sodium and calcium are monitored by Tucson Water in terms of parts per million (or milligrams per liter). To help you visualize how very small this unit is, we offer the following illustrations. One part per million equals: 2 ounces of water in a typical 15,000 gallon backyard swimming pool or one second of time in 11.6 days.

<u>Picocurie Per Liter (pCi/l)</u>. The quantity of radioactive material in one liter which produces 2.22 nuclear disintegrations per minute.

#### **Detail Information on Detected Contaminants**



#### **Fluoride**

is an important naturally-occurring mineral that helps to form healthy teeth and bones. A concentration of I ppm is considered optimum. At concentrations above 2 ppm, fluoride can cause mild discoloration of teeth, and exposure at/or above the MCL of 4 ppm can cause both severe discoloration of teeth and over many years of exposure, bone disease.

<u>Nitrate</u> is a form of nitrogen and an important plant nutrient. Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Tucson Water performs extra monitoring on wells high in nitrate for extra assurance that action can be taken when approaching the MCL.

**Gross Alpha** is a measure of radioactivity due to naturally currently have a final regulation for radon in drinking water. Extra radon monitoring was performed on Tucson Water wells in two quarters in 2000. Test results indicate that when compared with other communities across the country, Tucson has fairly typical concentrations for radon in the water supply.

#### How is my drinking water treated?

The groundwater delivered by Tucson Water meets all drinking water standards without treatment. However, approximately 0.8 parts per million (ppm) of chlorine is added to the drinking water supply to provide assurance that water delivered to customers will remain free of microbiological contamination. This also ensures that the water meets microbiological drinking water standards from the time it is pumped from the ground until it reaches the customer's tap.

<u>Radium 226 and 228</u> are two of the most common radium isotopes. Radium is a naturally occurring radionuclide, formed by the decay of uranium or thorium in the environment. It occurs at low concentrations in virtually all rock, soil, water, plants, and animals. The MCL is 5 pCi/L for both isotopes combined.

Haloacetic Acids (HAA) are a group of chemicals that are formed along with other disinfection byproducts when chlorine or other disinfectants used to control microbial contaminants in drinking water react with naturally occurring organic and inorganic matter in water. The regulated haloacetic acids, known as HAA5, are: monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, and dibromoacetic acid. EPA has published the Stage I Disinfectants/Disinfection Byproducts Rule to regulate HAA5 at 60 parts per billion annual running average.

**TTHMs** are formed when chlorine combines with naturally-occurring material in water. Because the level of organic matter in our groundwater is extremely low, these compounds are found at very low concentrations.

Lead and Copper are naturally occurring metals, which are generally found at very low levels in some waters. However, these levels can increase when water contacts plumbing materials containing lead pipe, lead soldered copper tubing, or brass. Infants and young children are typically more vulnerable to lead in drinking water than the general population. While Tucson Water is well within standards, concerned customers can take an extra precaution to protect children from lead leached from new brass faucets by running the water for a few seconds and using the water for something other than drinking. This is especially important if the water has been sitting in the pipes for a few hours or more. These same precautions also help to give you a better-tasting water.



## During 2004, Tucson Water ensured that your drinking water met all drinking water standards

This Annual Water Quality Report provides information on your drinking water. The United States Environmental Agency (USEPA) requires that all drinking water suppliers provide a water quality report to their customers on an annual basis. This report also serves as a reference with important information on the quality of water and with contacts and phone numbers you may need from time to time.

#### **Sunset Ranch**

**System** is a unique water system serving approximately 30 homes. This is the only isolated system where water is not supplied by a Tucson

Water well. Rather, it is served by water supplied by the Town of Marana.

#### Why are there contaminants in my drinking water?

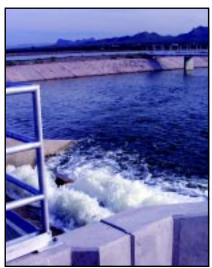
All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. Tucson's groundwater contains dissolved minerals and organic compounds, which have been leached from rocks, sediments, and plant minerals through which the water travels. One would expect to find beneficial minerals such as calcium and magnesium, harmless minerals such as chloride, bicarbonate, and sulfate, and metals such as iron, copper, arsenic, and lead, which may be either beneficial or harmless at low concentrations, but harmful at high concentrations. In addition to these naturally occurring contaminants, groundwater may contain contaminants resulting from human, industrial, or domestic activities. For this reason, water utilities must currently monitor for approximately 90 regulated and 12 unregulated contaminants.

The following language is required by the USEPA to appear in this report, some of which may not be applicable to deep groundwater wells, the source of this water supply:

Contaminants that may be present in a source water can include:

 Microbial contaminants, such as viruses and bacteria, which may come from sewage, agricultural livestock, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.


In order to ensure that tap water is safe to drink, USEPA regulations limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Bottled water may come from either a surface water source or groundwater source, and may be treated minimally or extensively. For information on the quality of your bottled water, contact the water bottling company.

#### Do I need to take special precautions?

While the Safe Drinking Water Act regulations are intended to protect consumers throughout their lifetime, some people may be more vulnerable to infections from drinking water than the general population. These "atrisk" populations include: immuno-compromised persons such as persons with cancer undergoing chemotherapy, people who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, and in some cases, elderly people and infants. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the USEPA's Safe Drinking Water hotline.

### Source Water Assessment Program (SWAP):

Arizona Department of Environmental Quality has completed a source water assessment of this system, which evaluates the risk of contamination from human activities. The water sources for this system are categorized as "low risk of contamination from human activities".

